Wind Energy

SPSE Reading Lesson

Task: Read the text on Wind Energy and fill in the outline plan. Identify the background, key problems, possible solutions and evaluation.
Teacher’s Notes

Reading Text - SPSE

Time: 1 hour
Level: ***/**B2/C1

Lesson Plan

Aim: to develop the students’ ability to read one academic text and highlight key points connected to background, problems, solutions and evaluation.

1. **Lead in**
 - What is wind energy? Brainstorm ideas and associated vocabulary.
 - Key vocab: wind farm, on-shore / off-shore, wind turbine, blades, generate electricity, sustainable energy, renewable energy (renewables), solar power, tidal energy, biomass, biogas, fossil fuelled power plants.

2. **SPSE Revision**
 - Remind students about what is a SPSE essay.
 - Go here:

3. **Reading**
 Give out blank outline and reading text. Set 45 minutes for the students to read the text and fill in the outline with the background, problems, solutions, evaluation.

4. **Feedback**
 Feedback as a group or give out model outline answer sheet.

5. **Extra**
 Students Internet research a sustainable energy (tidal, solar, biomass, biogas, etc..), create a SPSE plan and then write an essay.

Copyright: These materials are photocopiable but please leave all logos and web addresses on handouts. Please don’t post these materials onto the web. Thank you.
UK Wind energy

The UK is one of the best locations for wind power in the world, with over 458 operational onshore wind farms operating 5,215 turbines and 1,465 turbines offshore (Renewable UK, 2015). Wind power is the largest renewable source of energy in the UK followed closely by Solar power and the Government is investing heavily into renewables to reduce its reliance on fossil fuels and a fluctuated source of power. This essay will discuss two main problems of associated with reliability, offer possible solutions and finally evaluate their effectiveness.

According to Wilson (2016), the main problem associated with wind power is that it cannot produce a constant supply of energy. Obviously, it is reliant on a fluctuated source of power. The main consequence of this, is that the imbalance fails to meet the constant electricity energy needs of UK consumers, which in turn gives rise to backing up the supply grid through the use of fossil fueled power plants. This over-reliance on back-up systems leads to a further Germany is the world leader in sustainable energy development but this process has raised electricity bills for the consumer and it is arguable how eco-friendly their sustainable energy program is (Peterson, 2014).

Many critics are now warning that countries should invest more in fossil fuel and nuclear power stations to compensate this disparity. However, Being overly-reliant on one or two renewable sources is a grave mistake, evidence seems to suggest that using a variety would enhance energy efficiency. The main examples given by Johnson et al (2015), these work on the same principle as conventional fossil fuel power stations and can activated when there is a fall in supply from wind and solar. Another possible solution, unlike Germany, which is a consistent source of energy.

To a certain extent these solutions seem plausible in the compensation of fluctuating energy output from wind turbines and both release a minimum amount of CO2 compared to fossil fuel. However, (Wilson, 2016) and this would need to be developed and accepted through public consultation and Government Policy, which could take years, although the initial costs to implement such projects would need significant investment (Johnson et al, 2015) and more (Renewable UK, 2015).

Overall, reducing CO2 and limiting the reliance on fossil fuels is the primary directive for the UK government. The solutions proposed have limitations but with investment and public backing it could be a better approach in.

References
SPSE Outline

<table>
<thead>
<tr>
<th>Situation</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problems</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluation</th>
<th>Positives</th>
<th>Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conclusion</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COPYRIGHT of www.academic-englishuk.com/spse
SPSE Outline ANSWERS

Situation

Wind power - nearly __________ turbines = __________ energy. (Renewable UK, 2015)

Essay outline.

Problems

Problem 1

__________ supply of energy. (Wilson, 2016)

Problem 2

Sporadic use of fossil fuel power stations.

Solutions

Solution 1

A variety of __________ sources. (Johnson et al. 2015)

Solution 2

__________ energy. (Peterson, 2014)

Development

Problem 1

Problem 2

Inefficient & expensive __________ costs.

Ex. Germany.

Q. Is it Eco-friendly? (Peterson, 2014)

Evaluation

Positives

Solution 1

& less CO2.

Solution 2

& constant (Johnson et al. 2015)

Negatives

No __________. (Wilson, 2016)

Public consultation.

Gov. Policy.

Years.

Initial __________ costs / significant investment.

More research. (Renewable UK, 2015)

Conclusion

Solutions have limitations BUT __________.